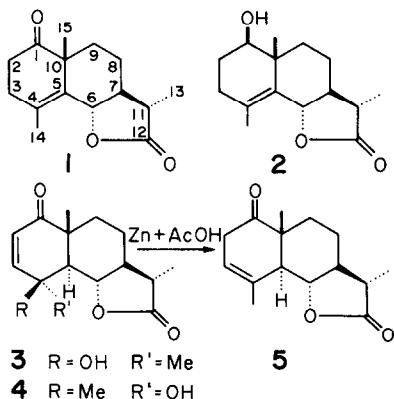


EUDESMANOLIDES OF *ARTEMISIA BARRELLIERI*

A. VILLAR, M. C. ZAFRA-POLO, M. NICOLETTI* and C. GALEFFI†

Departamento de Farmacognosia y Farmacodinamia, Facultad de Farmacia, Universidad de Valencia, Blasco Ibáñez 13, Valencia, Spain; *Cattedra di Chimica Generale ed Inorganica, Istituto dell'Orto Botanico, Università degli Studi di Roma, L. Cristina di Svezia 24, Roma, Italy; †Laboratorio di Chimica del Farmaco, Istituto Superiore di Sanità, v.le Regina Elena 299, Roma, Italy


(Received 26 July 1982)

Key Word Index—*Artemisia barrelieri*; Asteraceae; eudesmanolides; barrelin; ^{13}C NMR.

Abstract—A new eudesmanolide, barrelin, was identified from the herbal part of *Artemisia barrelieri*. 1-Oxo-6 β ,7 α ,11 β -H-eudesm-4-en-6,12-olide and 1 β -hydroxy-6 β ,7 α ,11 β -H-eudesm-4-en-6,12-olide were also isolated from the same source.

INTRODUCTION

Artemisia barrelieri Besser is endemic to south-eastern Spain. It is utilized in native medicine as a relief of intestinal spasms, and this property has been confirmed through determination of muscle relaxing activity [1]. From the flowering herb three eudesmanolides were isolated, two of which were already known, 1-oxo-6 β ,7 α ,11 β -H-eudesm-4-en-6,12-olide (**1**) and 1 β -hydroxy-6 β ,7 α ,11 β -H-eudesm-4-en-6,12-olide (**2**), whereas the third named barrelin was a new one to which a structure (**3**) epimeric with vulgarin (**4**) was assigned.

RESULTS AND DISCUSSION

By CC on Si gel and subsequent purification through counter-current distribution (H_2O -EtOH-*n*-hexane- Me_2CO , 10:1:18:10) the sesquiterpene lactones **1** (*K*, 0.54), **2** (*K*, 0.29) and **3** (*K*, 0.11) were separated. Compounds **1** and **2**, by comparison of physico-chemical data (mp, optical rotation and ^1H NMR), were identified, respectively, as 1-oxo-6 β ,7 α ,11 β -H-eudesm-4-en-6,12-olide and 1 β -hydroxy-6 β ,7 α ,11 β -H-eudesm-4-en-6,12-olide, isolated previously from *A. granatensis* Boiss. [2].

Lactone **3**, named barrelin, $\text{C}_{15}\text{H}_{20}\text{O}_4$, mp 178–178.5°, M^+ *m/z* 264 (base peak), $[\alpha]_D^{20} = +148^\circ$ (CHCl_3 ; *c* 2), showed IR bands ($\nu_{\text{max}}^{\text{CCl}_4}$) at 3560 (OH), 1770 (γ -lactone) and 1680 (α,β -unsaturated ketone) cm^{-1} and a UV maximum at 214 nm ($\log \epsilon$ 2.63). In the ^1H NMR spectrum of barrelin the following groups are evident: two tertiary methyl groups (δ 1.21 and 1.57), a secondary methyl group (δ 1.23), a hydroxyl group (δ 3.07), the sequence CH_a-CH_b (H_a δ 2.43, *d*, *J* = 12 Hz; H_b 4.20, *dd*, *J* = 10 Hz) and the vinylidene group (δ 5.87 and 6.63, *J* = 10 Hz).

These data supported a similar eudesmanolide structure for barrelin as for **1** and **2**. The coupling constants of H-6 (δ 4.20) indicated a *trans*-relationship with H-5 and H-7 and, therefore, a *trans*-junction for the lactone ring. Furthermore, the shape of H-5, a perfect doublet at δ 2.43, required complete substitution of the adjacent C-4. Therefore, the hydroxyl group was located in the γ -position to the α,β -unsaturated ketone, as in vulgarin (**4**), in agreement with the abnormally low wavelength of the UV spectrum of **3** [3]. Moreover, barrelin and vulgarin showed a remarkable similarity of ^1H NMR spectra, however, the two substances had different rotatory powers ($[\alpha]_D = +40.3^\circ$, CHCl_3 for vulgarin [4]), and different mp's and chromatographic mobilities (direct comparison). The ^{13}C NMR spectral data of **3** (see Table 1) and **4** [5] were practically identical except for C-14 (δ 19.7 in **3** and δ 22.7 in **4**). In barrelin the upfield shift of C-14 pointed out a steric interaction with the oxygen of the lactone ring which could be related to the different configuration of C-4.

The slower chromatographic mobility of barrelin in comparison with vulgarin was in agreement with the β -configuration of the hydroxyl group in **3** which does not allow the formation of a hydrogen bond with the oxygen of the lactonic ring as occurs in **4**.

In confirmation of the structure of **3**, barrelin, as in the case of vulgarin [3], gave desoxyvulgarin (**5**) on reduction with zinc and acetic acid.

Previously the isolation of an oily isomer of vulgarin with a similar ^1H NMR spectrum had been reported from

Table 1. ^{13}C NMR chemical shifts for 1–3 (TMS as int. standard)

Carbon No.	1 (CDCl_3)	2 ($\text{DMSO}-d_6$)	3 (CDCl_3)
1	212.2	84.7	201.6
2	32.8	40.9	125.1
3	34.9*	29.5	152.0
4	129.9	132.7	69.8
5	126.2	126.3	54.4
6	81.3	78.2	79.3
7	52.9	55.1	52.2
8	23.7	26.2	22.6
9	35.8*	35.7	34.1
10	48.7	44.3	46.3
11	40.6	42.6	40.4
12	177.6	180.7	178.2
13	12.3	14.7	12.4
14	19.7	21.0	19.7
15	23.2	22.0	23.6

*These values may be reversed.

A. ludoviciana [5] but its stereochemistry was not elucidated.

In Table 1 ^{13}C NMR data of 1 and 2 (besides those of 3) were reported. By comparison with the data of other eudesmanolides [6] they were in agreement with the *trans*-junction of the lactonic ring and with the α -configuration of Me-13. On the basis of the octant rule, the negative Cotton effect of 1 (ORD: $\phi + 4600$ at 273 nm and -3700 at 312 nm) was in agreement with the β -configuration of Me-15 and with the resulting atom predominance in negative octants. Like other α,β -unsaturated ketones, barrelin showed a Cotton effect at 330 nm (ORD: $\phi + 1900$ at 295 nm and -1000 at 353 nm), but it was impossible to relate the sign to the structure.

The occurrence of 1–3 in *A. barrelieri* and of 1, 2 and 4 in *A. granatensis* suggests an identical biogenetic pathway wherein the formation of a C-4 cation may be involved.

EXPERIMENTAL

Extraction and separation. The flowering herb *Artemisia barrelieri* Besser was collected in the region of Granada (Spain). The dried powdered material (6 kg) was extracted with EtOH \times 3 and the residue was submitted to CC on Si gel (CHCl_3). Through subsequent purification by counter-current distribution (H_2O –EtOH–*n*-hexane– Me_2CO , 10:1:18:10), monitored by TLC (Si gel F₂₅₄, CHCl_3 –EtOAc, 1:1), three substances, 1–3, were obtained. Compounds 1 (K , 0.54, 520 mg) and 2 (K , 0.29, 350 mg), by comparison of physico-chemical data, were identified as 1-oxo- $\beta,\beta,\gamma,\gamma$ -eudesm-4-en-6,12-olide and 1 β -hydroxy- $\beta,\beta,\gamma,\gamma$ -eudesm-4-en-6,12-olide, respectively [2].

Barrelin (3). K , 0.11, 285 mg. Crystals from EtOAc and *n*-hexane, mp 178–178.5°, $[\alpha]_D^{20} + 148^\circ$ (CHCl_3 ; *c* 2). (Found: C, 67.89; H, 7.37. $\text{C}_{15}\text{H}_{20}\text{O}$ requires: C, 68.16; H, 7.63%). UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm: 214 (log ϵ 2.63); IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm^{-1} : 3560, 1770 and 1680; ^1H NMR (CDCl_3 , TMS as int. standard): δ 6.63 (1H, *d*, $J = 10$ Hz), 5.87 (1H, *d*, $J = 10$ Hz), 4.20 (1H, *dd*, $J = 10$ and 12 Hz), 3.07 (1H, *s*, OH exchangeable with D_2O), 2.43 (1H, *d*, $J = 12$ Hz), 1.57 (3H, *s*, Me), 1.23 (3H, *d*, $J = 7$ Hz, Me), 1.21 (3H, *s*, Me); MS m/z (rel. int.): 264 [$\text{M}]^+$ (100), 249 (95), 246 (3), 231 (22), 204 (5), 203 (45), 191 (9), 185 (22); R_f 0.55; R_f vulgarin 0.70.

Reduction of barrelin (3). The reduction was carried out with Zn in boiling HOAc soln as reported for vulgarin [3] and the compound obtained was identical with desoxyvulgarin (5) obtained by reduction of a sample of vulgarin. Crystals from EtOAc and *n*-hexane, mp 135–138°, MS m/z : 248 (base peak, M^+).

Acknowledgements—We are greatly indebted to Professor A. G. González and Dr. M. Fraga, Universidad de la Laguna, Spain, for the kind supply of a sample of vulgarin.

REFERENCES

1. Villar, A. and Zafra-Polo, M. C. (1981) *Plant. Med. Phytother.* **15**, 144.
2. González, A. G., Bretón, J. L. and Stockel, J. (1974) *An. Quim.* **70**, 231.
3. Geissman, T. A. and Ellestad, G. A. (1962) *J. Org. Chem.* **27**, 1855.
4. González, A. G., Bermejo, J., Bretón, J. L. and Fajardo, M. (1973) *An. Quim.* **69**, 667.
5. Ohno, N., Gershenzon, J., Roane, C. and Mabry, T. J. (1980) *Phytochemistry* **19**, 103.
6. Moss, G. P., Pregosin, P. S. and Randall, E. W. (1974) *J. Chem. Soc. Perkin Trans.* **1**, 1525.